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Abstract

Direct analytical solutions can be useful in validating the core formulation of

numerical systems. In this document an exact analytical solution to the nonlinear Navier-

Stokes equation is compared to the numerical results from the three-dimensional

Terminal Area Simulation System (TASS). This exact solution, of which the derivation is

included, is for Beltrami type flow. Direct comparison of TASS to the analytical Beltrami

solution is then used in evaluating the accuracy of TASS.



1.0 Introduction

1.1 Purpose

Numerical simulation of three-dimensional wake vortices needs lengthy time

integrations over very large computational domains. Therefore, computational methods

are required that are very efficient in the use of computer time and memory, yet are both

stable and accurate. Use of numerical schemes with artificial (numerical) diffusion and

moderate explicit filtering should be avoided; otherwise, the numerical simulations may be

corrupted by artificial dilation of the wake vortex core and unrealistic decay of circulation.

This, in turn, may adversely affect the highly-coupled three-dimensional flow of the vortex

and may either retard or promote the generation of dynamic instabilities.

A simple approach for evaluating the accuracy and stability of a numerical system

is to compare results with analytical solutions. However, exact analytical solutions to the

nonlinear three-dimensional Navier-Stokes equations are not simple to find. One such

solution is Beltrami flow (Wang 1990, Taylor 1923), a class of flows for which the nonlinear

terms are both non-zero and vanish in the vorticity reformulation of the Navier-Stokes

equations. Solutions to Beltrami flow yield helical flows having the velocity and the

vorticity vectors aligned in the same direction.

Shapiro (1993) presented a solution for viscously-decaying Beltrami flow and its

implementation within a non-hydrostatic numerical model called the University of

Oklahoma Advanced Regional Prediction System (ARPS). He demonstrated that it could

be conveniently applied for validation of three-dimensional numerical models. Shapiro

used this analytical Beltrami solution to demonstrate its potential utility in validating other

numerical models and, specifically, to evaluate the integrity of the ARPS mode.

TASS has been modified to run Shapiro's analytical Beltrami solution thereby

adding to the array of test cases currently used for validation. Beltrami flow simulation

adds a unique contribution by testing the model's core formulation for accuracy. This test

case also provides a way to check and verify the fundamental numerical approximations

in addition to the fidelity of the basic equations set.
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1.2 Overview of Documentation

The TASS model is described in Section 2.0. Included in the description is a

general overview of the capabilities of TASS along with a description of the TASS base

equation set and its simplification resulting from Beltrami flow assumptions. Section 3.0

addresses the salient numerics of TASS important for this investigation. Next in section

4.0 is a derivation of the analytical Beltrami solution. Section 5.0 details the particular

parameters used to initializethe Beltrami solution. Section 6.0 then compares TASS

results to both ARPS results and the analytical solution. The comparison of TASS results

to the analytical Beltrami solutionwill show the sensitivity of the spatialaccuracy, temporal

accuracy and the fourth-order filter upon the simulation system.
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2.0 TASS Model Description

TASS is a three-dimensional time-dependent, nonhydrostatic, compressible model

developed at NASA Langley Research Center for the general purpose of studying

convective phenomena such as microbursts/windshear, convective rain storms, gust

fronts, hailstorms, and aircraft wake vortices (Proctor, 1987a, 1996). The equations are

primitive, non-Boussinesq developed within a meteorological framework. For

representative ambient conditions that are supplied as input, TASS has produced

simulations of real-world events that are of reasonable comparison with observations

(Proctor 1987b, 1993, 1996, Proctor & Bowles, 1992, Proctor et al 1995, Schowalter et al

1995, 1996). The salient characteristics of TASS are listed in table 2.1.
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Table 2.1: TASS Salient Characteristics (from Proctor 1996)

Primitive equation / non-Boussinesq equation set: time-dependent,

nonhydrostatic, compressible

Meteorological framework with option for either three-dimensional or two-
dimensional simulations

Liquid and ice phase microphysics -- can simulate growth processes for cloud
droplets, cloud ice crystals, rain, snow, and hail/graupel

Inverse-exponential size distributions for precipitating hydrometeors

Large Eddy Simulation model with first-order subgrid scale turbulence closure --
scales of turbulence larger than grid volume are resolved in the simulation

Ground stress function of surface roughness height

Choice of lateral boundaries: may be either open, mirror, or periodic -- open
condition utilizes mass conservative, non reflective radiation boundary scheme

Option for nonstationary domain -- movable, storm/vortex centering mesh

Explicit numerical schemes, quadratic conservative, time-split compressible --
accurate and highly efficient, almost no numerical diffusion

Arakawa C-grid staggered mesh and vertical coordinate stretching allowed

Ambient atmospheric conditions initialized with vertical profile of pressure or
altitude, temperature, dew point, and wind velocity

Model applicable to meso-'y and micro-scale atmospheric phenomenon

Initialization modules for simulation of convective storms, microbursts, atmospheric

boundary layers, and aircraft wake vortices

2.1 Tass Equation Set

The TASS model contains twelve prognostic equations: three for momentum and

one each for pressure deviations and potential temperature, six coupled equations for

continuity of water substance (water vapor, cloud droplet, cloud ice crystals, rain, snow,

and hail); and one for a massless tracer. The equations governing momentum and

pressure in tensor form are (Proctor 1996):

Momentum:

_)ui H_)p oqUiUi _Uj 1 °ql:ii

at +PoaXi axj +ui_jj +g(H-1)_i3-2_(uk-uk0)£'ijk+ , (1)- P0c-)Xj
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Pressure Deviation:

ap CpPaUj bpde
o_-_-+ Cv oqxj = p0guj(_j3 + Cv_d-_-,

where, ui is the tensor component of the velocity, t is time, p is the deviation from

atmospheric pressure P, H is the buoyancy term, p is the air density, .Q is the earth's

angular velocity, g is the earth's gravitational acceleration, e is the potential temperature,

"qj is the stress tensor, and Cp and Cv are the specific heats of air at constant pressure

and volume. Environmental state variables, e.g. Uk0, PO,TO, and eo, are defined from the

initial input sounding and are functions of height only.

2.2 TASS Equation Set Reduced for Beltrami Flow Simulations

The above equations are simplified for viscous Beltrami flow, since for Beltrami

flow: p=po=COnstant, H=I.0, D=0, Vm=COnstant , and de/dt=0, therefore,

Momentum:

aui 1 ap °qUiUj °_Uj o_ r°_Ui °_Uj 2 oq "]

a'_" + - + aX i _ij_-'_k Uk)PoO_Xi o-)Xj Ui_jj + Vm_jj [_jj +--- ] (3)

Pressure Deviation:

ap CpP°_ui
o_+ =0.

Cv o_xj (4)

(2)

Although the analytical solution for Beltrami flow assumes incompressible flow,

TASS integrates the equations as if compressible. Furthermore, the boundary conditions

for the Beltrami simulations are assumed to be periodic on all lateral boundaries, as well

as top and bottom boundaries.
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3.0 TASS Numerics

This section briefly describes the TASS numerical system. The numerical

approximations for momentum and pressure calculation are summarized in table 3.1.

Other details of the TASS numerical system can be found in Proctor (1987a) and (1996).

Table 3.1: TASS Numerics

Prognostic
Variable

Momentum and

Pressure

Time Derivative

Time-split with small time step
for acoustically-active terms and

large time step for advection and
diffusion; 2nd-order Adams-
Bashforth or 1st-order modified

Adams-Bashforth

Space Derivative

2nd-order Centered, quadratic-
conservative differences -- with

option for 4th-order accuracy of
advection terms

3.1 Time derivative

The time integration in TASS uses a generalized Adams-Bashforth scheme for

either second- or first-order approximations (Mesinger 1971), as:

QN+I =QN+At[(I+oo(_Q'_N ('_)Q'_N-I]\oqt ) -o_._- ) , (5)

with the parameter, (z, affecting the temporal accuracy. In (5), Q represents any

prognostic variable, At is the time step. and the superscript N represents the time level.

When o_is 0.5, (5) represents the second-order Adams-Bashforth scheme (AB). For any

other value greater than zero (5) reduces to a first-order scheme.

The AB scheme, while having a second-order truncation error, has a very slight

linear amplification error. Mesinger (1971) proposed using a value of 0.809 for o_in order

to eliminate the amplification error and make the scheme conditionally stable. This value

of o_gave an optimum range for linear stability, but has a larger phase error and some

numerical damping. Equation (5) with a value of 0.6 for o_, although having only a first-

order truncation error, decreases the linear amplification compared to the AB scheme

without introducing significant phase or damping errors. In this report we will use second
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order Adams-Bashforth for small time step iterations and (5) with either 0_=0.5(AB) or

o_=0.6 modified Adams-Bashforth (MAB) for large time step integrations.

3.2 Space Derivative

The formulation of the second-order finite difference equations are contained in

Proctor (1987a). The fourth-order approximations for the velocity flux and divergence

components are in Proctor (1996). The governing equations are approximated on a

spatially-staggered three-dimension grid.

3.3 Filter

Fourth-order filters were designed in TASS to eliminate spurious noise generated

by open lateral boundaries and computational noise generated by strong horizontal

advection. A modest application of a spatial filter is applied at each time step to eliminate

spurious high frequency waves. Filtering in the horizontal plane for u and v velocities is

done with a fourth-order biharmonic operator. The equation for the horizontal filtering is:

r ,Q a4Q 'Q1aQ • 'a • 'a
J _-tL a-'7 ax2ay2 Aya--TJ'_" Filter + _ + (6)

where Q is either the u or v velocity and Ax and Ay are the grid sizes in the x and y

directions, respectively. The finite difference representation of the biharmonic operator in

the bracket is:

20Qo, o-8(Ql,o+Qo, 1 +Q_l,0 +Qo _1) + (7)

2 (Q1,1 +Q1,-1 + Q-1,1 + Q-1,-1) +

(eo, 2 + Q2, o + Q-2, o + Q0,-2)

where the subscript refers to the offset from the point (0,0). The first and second terms of

the subscript refer to the x and y direction offsets, respectively. Vertical velocity is filtered

with a fourth-order filter as:

4

aw) _ r. 4aW] (8)

where w is the vertical velocity, z is the vertical coordinate, and Az is the grid size in the z
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direction. The finite difference representation of the fourth-order derivative is:

6w o - 4 (w 1 + w_ 1) + w_2 + w 2 , (9)

where the subscript is the vertical offset from the point (0).

In equations (6) and (8) there is a constant, _, that modulates the weight of the filter.

The ideal choice for this constant will selectively damp spurious high frequency waves

while not affecting the actual solution. The effect of the above filters on the accuracy of

the simulated Beltrami flow will be evaluated.
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4.0 Viscous Beltrami Flow

The following derivation is expanded from Shapiro (1993). Beltrami flow is

characterized by the velocity and the vorticity vectors always being aligned in the same

direction. This is expressed by the relation

.-) ...) ._

VxVxV = 0 orVx_0 = 0, (10)

...1

where V is the velocity vector (u,v,w) and o_ is the vorticity vector being defined as the

curl of the velocity (_ = Vx_). A brief transformation of the Navier-Stokes equations to

the vorticity equations sets the framework in which to derive a particular solution to

Beltrami flow. The mass continuity equation and the Navier-Stokes equation for an

incompressible viscous flow in cartesian coordinates are:

(11)

.-1

D...V
I _ _e

= + vV2V - g _ , (12)Dt p

where p is the density, v is the kinematic viscosity, P is the pressure, and g is the

acceleration of gravity. The expansion of the material derivative of velocity gives:

oq _ 2 _ _)

_--i-V+ V q- V x VxV = -lvP + vF'2_- g_ (13)
p

2 "1 "1

where q = V.V. Substitution of vorticity into (13) gives:

_-V+V _x_ lVP ") ^- = - +vV2V- gk. (14)
P

Finally, taking the curl of (14) results in the vorticity equation:

a?o -,
a-i-+v • = v (15)

These equations can now be solved based on the limitations of (10) resulting in an exact

solution to (12). The alignment of the vorticity and velocity vectors everywhere throughout

the flow is written as:

(16)
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with Xbeing a constant.

the twisting and stretching terms with the non-linear advection terms of (15). The

substitution of (16) into (15) yields a diffusion equation for vorticity:

_ vV2 .
at

The alignment of vorticity with velocity results in the balancing of

(17)

Further substitution of (16) into (17) results in a diffusion equation for momentum:

_ VV2_

_t

To further simplify (18), we take the curl of (16) and utilize the vector identity

Vx(Vx_/ = V[V._I_V2_ and (16) toarrive at the equation:

+ =o.

(18)

(19)

Substituting (19) into (18) yields the equation:

c)_ _V_2_

Ot
(20)

which has the solution:

V = F(x,y,z) (21)

...)
where F must satisfy the following Beltrami flow constraints:

-.) -) ..)
V*F=O andFxVxF = 0. (22)

Now that a solution for the velocity field has been determined, the pressure relation is

sought. We apply (16) and (17) into (13) which integrates to:

q2P + + gz = f (t) (23)
p

This equation provides a relation to diagnose pressure once the velocity field has

been determined. The results of (21) and (23) are a time varying solution of the

incompressible Navier-Stokes equations with constant viscosity. The nature of (21) is a

viscous, decaying velocity field. According to Shapiro (1993) a non-trivial solution for

Beltrami flow can be obtained only when periodic boundary conditions are assumed.
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Furthermore, the pattern of the solution must contain an integral number of wavelengths

sothat thereare nodiscontinuities acrossany boundaries. From Shapiro (1993), an exact

solution based on (21) that satisfies (22) is:

A (_v_,2t)

u - k2 + 12 [_,lcos (kx) sin (ly) sin (mz) + mksin (kx) cos (ly) cos (mz) ] e , (24)

A

v = k2 +i------ _ [k, ksin (kx) cos (ly) sin (mz) - mlcos (kx) sin (ly) cos (mz)] e (-v_'2t) , (25)

w = Acos (kx) cos (ly) sin (mz) e (-vx2t) , (26)
with

_2 k 2 + 12 2
= + m , (27)

where A is the maximum magnitude of the vertical velocity. The variation of the wave

numbers (k,l,m) can test the ability of a scheme to handle varying gradients of the flow

velocities. From (23) the solution for pressure is

2 V 2 W 2 /P = Ps-P u + +_. +gz ,

where Ps is the total pressure at the ground.

(28)
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5.0 Initialization Conditions for the Validation Case of the TASS Code

The initial conditions are identical to those used in Shapiro (1993), thus allowing

comparisons with his numerical simulations using the ARPS model as well as the exact

analytical solutions. The following values are used in equations (24) to (28) to initialize

the velocity field at time zero:

A = 2 m/sec, Lx = 267 m, Ly = 118 m, Lz = 44 m,

k = 4r,/Lx, I = 2_/Ly, m = 2_/Lz, Ax = 3 m, Ay = 2 m, Az = 1 m.

From the initialization conditions given above, the magnitude of the wavenumber is:

;L = 4/k2 + 12+ m 2 = 0. 1595 (29)

The domain size in the x direction is much longer containing two wavelengths. The other

two directions contain one wavelength. The number of points contained in the physical

domain for each direction is: n x = 89, ny = 59, and nz = 44. Note that values used for grid

size, domain length, and number of points are different in each direction.

Figure 1 portrays the flowfield at the time of initialization and figure 2 shows three-

dimensional perspective of velocity vectors at several locations along the East-West axis

at initialization.
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6.0 TASS Run Results

6.1 Baseline Test Case

A baseline case is chosen which can be compared with both the analytical Beltrami

solution and the ARPS code. The baseline case assumes v=l m2/sec, the second order

AB time differencing scheme, and second-order space derivatives. The analytical time

history of the maximum velocity components and the sum of the kinetic energy for this

case is shown in figure 3. After 82 seconds the velocity magnitude has decayed to 12%

of its initial value and the kinetic energy is 1% of its initial value. The fourth-order filter

coefficient in TASS (see equations (6) through (9)) was set to _=1.52x10 3. The large

and small time steps in TASS are automatically chosen based on linear stability criteria,

with the value being 0.058 and 0.0012 seconds, respectively. The simulation took 36

minutes of central processing unit (CPU) time on a Cray C90 supercomputer.

6.1.1 Comparison of TASS with ARPS

ARPS is a second-order spatial and temporal accurate code, which, like TASS,

splits the time integration into large and small time steps. ARPS uses an Asselin time

filter to suppress the development of nonlinear instability due to the leap-frog time

differencing scheme. The large and small time steps used in the ARPS simulation were

0.19 and 0.002 seconds, respectively (Shapiro 1993). Timing was unavailable for this

simulation.

The method of evaluating the relative performance will be the use of both contour

and vector plots of the velocity error for horizontal cross-sections. The error values are

14



computed from the following relation:

Verr = VMODEL_ VANL (30)

where V is the particular velocity component.

A comparison between the TASS Baseline case and ARPS error fields at the

horizontal plane mz = =/2 (z=10 meters) is shown in figures 4 and 5. The TASS and

ARPS error vectors (figure 4) are both plotted on the same scale showing that TASS has

a significantly smaller error magnitude. At this time the value for the maximum error for

U and V velocities in the TASS flowfield are 0.005145 and 0.004662 m/sec, respectively,

with the maximum U and V velocity being approximately 1.0 m/sec. Figure 5 shows the

maximum absolute vertical velocity error of TASS is less than half that of ARPS. The

maximum TASS vertical velocity error domain-wide is 0.004457 and the maximum vertical

velocity is about 0.75 m/sec.

6.2 Additional TASS Runs

Additional runs are made with TASS to evaluate its accuracy for: 1) second- vs

fourth-order finite differencing for spatial advection, 2) modification to the time differencing

scheme, and 3) sensitivity to the fourth-order numerical filter.

These additional TASS runs will be evaluated primarily based on two variables,

which are based on percentage error. The first is the kinetic energy error and the second

is the vertical velocity error. The kinetic energy error is obtained by first calculating the

exact analytical Beltrami solution. Next the kinetic energy over the entire domain for both

the analytical and TASS fields are then determined. The error is computed by the

percentage error of the two resulting numbers as given by the equation:
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/ KEMODEL- KEANL/%KEERa (31)

This error gives an indication of amount of numerical diffusion. The next variable is the

vertical velocity error and is computed by the following equation:

/Maxij, k('W'MODEL)-Maxi, j,k('W'ANL ))Err°raMs = ' 100, (32)
Maxi, j, k (IWIANL)

where Maxi, j, k (IWl) is the maximum vertical velocity over the entire domain. This

variable will give an indication of the error in the rate of change in the maximum vertical

velocity. These two diagnostic error variables are evaluated over the course of the time

integration.

Two sets of simulations are conducted with the first set having a larger value of

viscosity and the second set a relatively small value. With a large value for the viscosity

the peak magnitude of the velocity decays with time. Therefore, the time integration

accuracy along with the advection terms and the coupling between the pressure and the

velocity fields are important for an accurate simulation. On the other hand, for small

viscosity as in the second set of experiments, the flow becomes nearly steady state, or

weakly decaying, and the accuracy of the time integration is less critical. In this set, the

accuracy of spatial advection and proper coupling between pressure and velocity are

critical to the success of the simulation. The value of viscosity chosen for each of these

two sets are 1.0 and 0.01 m2/sec, representing decaying and weakly-decaying cases,

respectively. For the weakly-decaying case, the velocity and the kinetic energy are 98%

and 96%, respectively, of their original values at 82 seconds of simulation time.
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Table 6.1 shows the settings for all TASS runs and table 6.2 shows the error values

at the end of each run. The first six runs are the decaying case (v=l m2/s) and the

remaining five are the weakly decaying case (v=0.01 m2/s). The baseline case used in

section 6.1 is run number 5. Table 6.1 is shaded to aid in locating the runs compared.

Similarly shaded cells within each case and setting represent comparison runs to be

discussed. For each comparison the remaining settings are unchanged, thereby isolating

the effect of the setting in question. For example, the decaying case has two comparisons

for spatial accuracy with one set using the AB scheme (runs 3 and 5) and the other using

the MAB scheme (runs 1 and 2), and the fourth order filter coefficient being constant for

both sets. The results of all the runs are very good with the maximum kinetic energy error

level being less than 0.5% demonstrating that the TASS core formulation is stable and has

very little numerical dissipation. The time history of the errors for the decaying case are

shown in figure 6 with the differences between the first five runs being relatively slight.

The slope of the kinetic energy error for these five runs shows the decay of the TASS

simulation to slightly lag the analytical solution. The weakly-decaying case error history

has all but one run having a negative slope (figure 7). The line patterns of runs with the

same settings for the two cases are the same in figures 6 and 7 to further aid in

comparison.
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Table 6.1: TASS Settings

Run #

1

2

Decaying 3
Case Runs

4

5

6

7

8
Weakly Decaying

Case Runs 9

10

11

Spatial
Accuracy

//
4th

Time

Integration
Scheme

MAB

4th

AB

MAB

4th "

4th

4th

4th

MAB
MAB

AB

MAB

Fourth
Order Filter

Coeff.

1.52x10 3

1.52x10 "3

1.8x10_ i

1.52x10 .3

s.xl 
1.52}(10 "8

0

1.52x10 .3

1.81x10 "3

2nd - MAB 1.52xl 0 "3

Table 6.2:

Decaying
Case Runs

Weakly Decaying
Case Runs

TASS Results

Percent Error at 82 seconds
Run #

Kinetic Energy Vertical Velocity

1 .346 .180

2 .344 .403

3 .284 .150

4 .275 .146

5 .285 .372

6

7

8 .0053 -.101

9 -.38 -.283

10 -.45 -.308

-.4311 -3.11
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6.2.1 Spatial Accuracy

The spatial advection in TASS is approximated by a quadratic conservative central

difference scheme, with an option for either second- or fourth-order differencing. The

important result from the spatial accuracy comparison will be the additional CPU time

required as compared to the benefits of fourth-order spatial advection.

The four runs that isolate the effect of spatial accuracy for the decaying case are

runs 1 and 2 and runs 3 and 5. The first pair utilize the MAB time integration scheme with

the latter pair using the AB scheme. The runs that are fourth-order spatially accurate are

runs 1 and 3. The filter coefficient for these runs is set at 1.52x10 -3. For these two

comparisons, the change in advection accuracy has negligible effect on the kinetic energy

error (figure 6). However, the relative differences are noticeable for the vertical velocity

error, with the error for fourth-order spatial advection being less than half that of second-

order. Figures 8 and 9 display TASS results for runs 3 and 5. The fourth-order horizontal

velocity error vectors (figure 8) are substantially smaller than the second-order vectors

and a comparison of the magnitude of the vertical velocity error shows the fourth-order

run to be less than one-fifth the magnitude of the second-order run (figure 9). The velocity

error vectors also show the pattern for the two runs to be substantially different, whereas

the vertical velocity plots show the same pattern. The increased computer time required

for the fourth-order scheme is small, being less than 6% greater than the second-order

run.

For the weakly-decaying case, runs 7 and 11 isolate the spatial accuracy effect.

For these runs the filter coefficient is set at 1.52x10 -3 and the time integration is the MAB
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scheme. Run 7 is the fourth-order spatial accurate run. The spatial accuracy has a much

greater effect in this case. The reduction of the error is about 13% for the kinetic energy

error and an order of magnitude for the vertical velocity error (figure 7). Further, the

second-order advection, run 11, shows a nonlinear error growth near the end of the run

with the strongest divergence from the analytical solution being most apparent in the

vertical velocity error. The additional CPU time required for this case is less than 5%. The

larger values for the error levels is not unexpected since the weakly-decaying case

emphasizes the advection terms.

The important observations from the effect of the spatial accuracy is a noticeable

improvement in the quality of the solution for fourth-order spatial accuracy with little

additional CPU time required for both cases. The importance of spatial accuracy is quite

apparent for vertical velocity error for the weakly-decaying case. For the decaying case,

the differences resulting from a change of spacial accuracy is not as obvious from the

kinetic energy and vertical velocity error histories, but the contour and vector error plots

display quite a large dependence upon this change. The additional CPU time required for

the additional accuracy is on average for all runs only 4.6%. Further, the added percent

of CPU required for the fourth-order spatial advection will be reduced as additional parts

of the simulation system are activated (i. e. turbulence or microphysics parameterization

modules).

6.2.2 Temporal Accuracy

The objective of this part of the investigation is to determine if the MAB can be used

as an alternative time integration scheme.
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The four runs that isolate the effect of the temporal accuracy for the decaying case

are runs 1 and 3 and runs 2 and 5. The spatial accuracy of the first two are fourth order

and the others are second order with the filter coefficient being set at 1.52x10 3. Runs 3

and 5 use the AB scheme. The increased error due to the MAB scheme (runs 1 and 2) is

relatively small (22%) for the kinetic energy error values and non-existent for the vertical

velocity error (figure 6). Figures 10 and 11 compare TASS results for runs 1 and 3. Unlike

the spatial accuracy comparison, the differences are quite small for this comparison, and

the flow patterns are essentially the same (figure 10). The comparison of the maximum

vertical velocity error values show the relative improvement of the AB over the MAB time

scheme to be only 8% (figure 11). Therefore, although the error variables indicate a

higher lever of error resulting from the MAB scheme, the plots show much less impact

upon the quality of the solution.

The runs that examine the effect of the two time differencing schemes for the

weakly-decaying case are 7 and 9. Both runs are fourth-order spatial accurate with the

filter coefficient set at 1.52x10 3. Run 9 uses the AB scheme. Both kinetic energy and

vertical velocity errors for this case are identical (figure 7).

The result of this comparison will be taken only from the decaying case because

the weakly-decaying case shows no sensitivity to either time differencing scheme. The

time history results show increased error only in the kinetic energy error with the contour

and vector error plots showing no differences. The lack of significant differences shows

that the phase or damping errors of the MAB scheme are so slight that they do not

adversely affect the quality of the solution. Thus for Beltrami flow, both the AB and MAB
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schemes give comparable results, with the AB scheme being slightly more accurate.

6.2.3 Fourth-Order Filter

The fourth-order filter iscontrolled by the coefficient, _,from equations (6) and (9).

The values used result in modest to no filtering. Moderate and large values are avoided

since they can result in over smoothing of the solution and non-physical damping of the

kinetic energy. The effect of this coefficient on the simulation results will be evaluated.

The effect of this coefficient for the decaying case is examined in runs 1, 4, and 6.

These runs assume fourth-order spatial accuracy and the MAB time integration scheme.

Run 6 has the greatest filtering and run 1 has the least. The trend is a decrease of the

error slope with an increasing filter value for both the kinetic energy and vertical velocity

errors (figure 6).

The weakly-decaying simulations also use the MAB scheme and fourth-order

space derivatives. Runs 7, 8, and 10 demonstrate the effect that the fourth-order filter

coefficient has uponthe solution, with run 7 havingno filtering and run 10having the most.

The trends are the same as that of the decaying case for the kinetic energy error with

increasing filter values decreasingthe slope of the error growth (figure 7). For no filtering,

the vertical velocity error shows better accuracy during the first minute of the simulation.

The other two runs show no appreciable difference due to filtering.

The important conclusion from the cases examining the sensitivity of the fourth-

order filter is that all settings gave very good results. However, small values for _had the

effect of reducing the slope of the error growth.
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6.2.4 Comparison of ARPS to TASS with Fourth-Order Spatial Accuracy

Run 3 is the same as ARPS with the exception of spatial accuracy being fourth

order. The fourth-order spatial advection resultsof TASS arean order of magnitude better

than ARPS (figure 12). Althoughnot a fair comparison to ARPS, this shows the relatively

high degree of accuracy possible with TASS.
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7.0 Conclusion

The Beltrami flow constraint on viscous incompressible flow results in an exact

solution to the Navier-Stokes equations. The structure of Beltrami flow is a complex,

stationary, viscous, decaying, vortical flow. This solution is capable of verifying the core

numerics of any 3-D computational fluid dynamics code in the absence of turbulence,

moisture, and buoyancy effects. TASS has been modified to simulate the Beltrami flow

field, testing the accuracy of the core numerics of the code. The results presented here

have shown that TASS is capable of simulating Beltrami flow with extremely small errors.

The TASS code has demonstrated accuracy in comparison to both an exact solution and

other numerical results. The conclusion from an accuracy analysis of TASS show that

fourth-order spatial accuracy with Adams Bashforth time integration and a fourth-order

filter coefficient value of 1.52x10 3 gives the best results for either strongly- or weakly-

decaying 3-D vortical systems. Of these three areas, the most significant is the order of

spatial accuracy with the added cost of running the fourth order vs second order being at

most only 6%. The conclusion from the comparison of the time differencing schemes is

that negligible difference occurs between the AB and MAB scheme. The accuracy of the

solution can be improved further by a modest application of a fourth-order filter without

detriment to the quality of the solution. TASS gives stable results with minimal numerical

diffusion and is in excellent agreement with the analytical solution. The results of the

Beltrami flow simulations suggest that TASS is capable of accurately simulating non-

linear and time-varying vortical flow fields with almost no artificial dissipation.
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Figure 1- Initial Beltrami flow field 2-D vector plots. Horizontal plane at mz = r,./2 (top),

vertical East-West Plane at ly = = (middle), and vertical North-South plane at
kx = = (bottom).
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Decaying Case Results
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Weakly-Decaying Case Results
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